Effects of bone marrow mesenchymal stem cells (BM-MSCs) on rat pial microvascular remodeling after transient middle cerebral artery occlusion
نویسندگان
چکیده
Previous studies have shown that the pial microcirculation remodeling improves neurological outcome after middle cerebral artery occlusion (MCAO), accompanied by higher expression of vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS), modulating in vivo angiogenesis. This study was aimed to assess the effects of bone marrow mesenchymal stem cells (BM-MSCs) infused after MCAO on rat pial microcirculation. Animals were subjected to 2 h MCAO followed by BM-MSCs infusion into internal carotid artery. Pial microcirculation was observed at different reperfusion times by fluorescence microscopy. Geometric characteristics of arteriolar networks, permeability increase, leukocyte adhesion, perfused capillary density, VEGF, and endothelial nitric oxide synthase (e-NOS) expression were evaluated. Green fluorescent protein (GFP)-BM-MSCs were used to evaluate their distribution and cell phenotype development during reperfusion. BM-MSCs stimulated a geometric rearrangement of pial networks with formation of new anastomotic vessels sprouting from preexistent arterioles in the penumbra at 7-14-28 days of reperfusion. At the same time VEGF and eNOS expression increased. GFP-BM-MSCs appear to be involved in endothelial and smooth muscle cell programming in the infarcted area. In conclusion, transient MCAO induced pial vascular remodeling characterized by arteriolar anastomotic arcades (originated from preexistent arterioles in penumbra area) able to overlap the ischemic core supplying blood to the neuronal tissue. BM-MSCs appear to accelerate angiogenic processes facilitating new vessel formation; this mechanism was promoted by an increase in VEGF and eNOS expression.
منابع مشابه
Differential Clearance of Rat and Human Bone Marrow-Derived Mesenchymal Stem Cells From the Brain After Intra-arterial Infusion in Rats.
Intra-arterial (IA) delivery of bone marrow-derived mesenchymal stem cells (BM-MSCs) has shown potential as a minimally invasive therapeutic approach for stroke. The aim of the present study was to determine the whole-body biodistribution and clearance of technetium-99m ((99m)Tc)-labeled rat and human BM-MSCs after IA delivery in a rat model of transient middle cerebral artery occlusion (MCAO) ...
متن کاملEmergence of signs of neural cells after exposure of bone marrow-derived mesenchymal stem cells to fetal brain extract
Objective(s): Nowadays much effort is being invested in order to diagnose the mechanisms involved in neural differentiation. By clarifying this, making desired neural cells in vitro and applying them into diverse neurological disorders suffered from neural cell malfunctions could be a feasible choice. Thus, the present study assessed the capability of fetal brain extract (FBE) to induce rat bon...
متن کاملHarvesting of bone marrow mesenchymal stem cells from live rats and the in vitro differentiation of bone marrow mesenchymal stem cells into neuron-like cells
In the bone marrow, there are certain populations of stem cell sources with the capacity to differentiate into several different types of cells. Ideally, cell transplants would be readily obtainable, easy to expand and bank, and capable of surviving for sufficient periods of time. Bone marrow mesenchymal stem cells (BM-MSCs) possess all of these characteristics. One of the most important benefi...
متن کاملHistomorphometric evaluation of treatment of rat azoosper-mic seminiferous tubules by allotransplantation of bone marrow-derived mesenchymal stem cells
Objective(s): Bone marrow-derived mesenchymal stem cells (BM-MSCs) potentials make them appropriate for cell therapy including ability of differentiation and release of anti-inflammatory cytokines and growth factors secreta. For treatment of azoospermia to induce proliferation and differentiation of germ cells, MSCs transplantation has been introduced. The aim of the present experimental case-c...
متن کاملIn vitro Assay of Human Gingival Scaffold in Differentiation of Rat’s Bone Marrow Mesenchymal Stem Cells to Keratinocystes
Objective(s)Tissue engineering is an attractive science because it promises new therapeutic strategies for repairing organs that have lost functions due to damage. The purpose of this study was to evaluate induction effect of human gingival scaffold in tissue engineering for skin regeneration.Materials and MethodsTissue samples were obtained from crown-lengthening procedures and wisdom teeth re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2015